Prevalence of \(\text{bla}_{\text{CTX-M}} \), \(\text{bla}_{\text{SHV}} \) and \(\text{bla}_{\text{TEM}} \) \(\beta \)-Lactamase Genes Among \textit{Escherichia coli} Isolates in Foodborne Outbreak in Iran

Mohammad Mehdi Soltan-Dallal\(^1\), Fereshteh Fani\(^2\), Zahra Rajabi\(^2\), Mohsen Karami-Talab\(^1\), Hedroosha Molla Agha Mirzaei\(^2\)

\(^1\)Devisioon Food Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
\(^2\)Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
\(^3\)Professor Alborzi Clinical Microbiology Research Center, Faculty of Medicine, Shiraz University of Medical Sciences, Fars, Iran

*Corresponding Author:
Hedroosha Molla Agha Mirzaei,
Address: Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Tel: +98-21-88992971,
Email: hedroosha.mirzaei@yahoo.com

Published Online: February 27, 2018

Keywords: \textit{Escherichia coli}, TEM, CTX-M, SHV, PCR

The highest resistance in \textit{E. coli} isolates was reported against ampicillin (56%), and 36% of samples were ESBL-positive. As determined by PCR, the prevalence of SHV, TEM, and CTX-M1 genes was 0%, 18%, and 38%, respectively.

Conclusion: Due to the prevalence of \(\beta \)-lactamase genes, application of accurate and rapid identification methods such as PCR deems essential. Therefore, it can be considered as a routine method.

Received August 14, 2017; Revised January 10, 2018; Accepted January 15, 2018

Abstract

Extended spectrum beta-lactamases (ESBLs) are known as enzymes that are responsible for creating high level of antimicrobial resistance in gram negative microorganisms especially in \textit{Escherichia coli}. Therefore, survey and identification of the genes generating these enzymes can be effective in controlling the resistance and helpful in using appropriate \(\beta \)-lactam drug against them.

Background:

ESBL genes were determined using antimicrobial susceptibility test based on the Clinical and Laboratory Standards Institute (CLSI), disk diffusion method, and confirmatory test (combined disk). Subsequently, polymerase chain reaction (PCR) was performed for following the relative genes.

Materials and Methods:

Four hundred stool samples from the individuals with diarrhea, nausea, vomiting, abdominal cramps, fever and headache were tested by IMVIC biochemical test for
\textit{E. coli}. ESBL genes were determined using antimicrobial susceptibility test based on the Clinical and Laboratory Standards Institute (CLSI), disk diffusion method, and confirmatory test (combined disk).

Results:

In the past 15 years, many epidemics caused by ESBL-positive organisms have been reported worldwide. This prevalence is a serious threat to the treatment of infections. Experience has shown that there is no satisfactory outcome for treatment of infections caused by ESBL-positive bacteria. The mortality rate of this group was significantly higher than the infections caused by drug-sensitive bacteria, varying from 42% to 100%. Nowadays, increasing use of antibiotics like cephaprilin has led to the emergence of a different group of \(\beta \)-lactamase genes that are compared with primary \(\beta \)-lactams (TEM-1, TEM-2, SHV-1). They have a higher activity spectrum, which can be described as general ESBLs which are wider than the first \(\beta \)-lactamases. Therefore, the use of molecular

Increasing challenge of antimicrobial resistance is focused on the worldwide increasing \textit{Escherichia coli} that contain extended-spectrum beta-lactamases (ESBLs). These enzymes lead to resistance against the antibiotics such as cephalosporins and monobactams by hydrolyzing the \(\beta \)-lactam ring. In \textit{E. coli}, ESBL genes like \(\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}}, \) and \(\text{bla}_{\text{TEM}} \) are typically transported by movable genetic elements that have high facility in transition of resistance genes. Pathogenic \textit{E. coli} is one of the causes of intestinal and extraintestinal infections in humans. \textit{E. coli} is a major producer of \(\beta \)-lactamase enzymes and one of the most important health problems worldwide, especially in developed countries where it is considered to be responsible for the death of 2.5 million children per year. Different methods such as double disk synergy test (DDST) have been suggested for the detection of ESBL in clinical isolates.

In the past 15 years, many epidemics caused by ESBL-positive organisms have been reported worldwide. This prevalence is a serious threat to the treatment of infections. Experience has shown that there is no satisfactory outcome for treatment of infections caused by ESBL-positive bacteria. The mortality rate of this group was significantly higher than the infections caused by drug-sensitive bacteria, varying from 42% to 100%. Nowadays, increasing use of antibiotics like cephaprilin has led to the emergence of a different group of \(\beta \)-lactamase genes that are compared with primary \(\beta \)-lactams (TEM-1, TEM-2, SHV-1). They have a higher activity spectrum, which can be described as general ESBLs which are wider than the first \(\beta \)-lactamases. Therefore, the use of molecular
methods for the complete identification of these enzymes is important. The aim of this study was to identify ESBL-producing enzymes of *E. coli* using phenotypic methods and to evaluate TEM, SHV and CTX-M1 β-lactamase genes by polymerase chain reaction (PCR method) in foodborne disease outbreaks.11,12

Materials and Methods

Within 9 months, 400 stool samples were collected from 100 foodborne outbreaks that had occurred across the country. Diarrheal samples of the patients with foodborne poisoning with symptoms of diarrhea, vomiting, nausea, abdominal cramps, fever and headache were taken.

Fifty *E. coli* isolates were identified via biochemical tests on colonies based on the following criteria: positive glucose fermentation, positive lactose fermentation, negative citrate, negative SH2, positive nitrate, methyl red positive (MR), Yoges-Proskauer negative (VP), negative ureases, positive indole, and negative phenylalanine deaminase detected by using standard biochemical tests including the indole, methyl red, Yoges-Proskauer, and citrate (IMViC) tests. All strains of *E. coli* were isolated from the samples that created a metallic mucilage colony on the Eosin Methylene Blue (EMB) agar (Merck, Germany) and stored in skim milk at -70°C until required for further tests.

Screening and Phenotypic Identification of ESBLs

According to the Clinical and Laboratory Standards Institute (CLSI), disk diffusion method was carried out using Muller-Hinton agar (pH 7.4 = 7.2) for the initial screening of *E. coli* isolates expressing ESBLs. Microbial suspensions with concentrations of 0.5 McFarland were consistently spread on the plates with Muller-Hinton agar medium. Antibiotic disks prepared by the company (Rosco Neo-Sensitabs, Denmark) included ampicillin (10 μg), azitromycin (15 μg), cotrimoxazole (30 μg), nalidixic acid (30 μg), ceftriaxone (30 μg), and cefotaxime-clavonic acid (10-30 μg), ceftaxime (30 μg), and cefotaxime-clavonic acid (10-30 μg) prepared from the company (Rosco Neo-Sensitabs Denmark) were placed with at least 2.5 cm from each other on the medium.

After incubation for 24 hours at 37°C, an inhibition zone around the disk containing clavonic acid as an inhibitor of ESBL enzymes was measured relative to non-clavionic acid. If there was an increase in the zone of inhibition (ZOI) by ≥5 mm, strain was considered as an ESBL generator according to the CLSI standards.

Primer Design

Submitted sequences related to the *E. coli* TEM, CTX-M1, and SHV are present in GenBank, NCBI. All sequences were achieved and aligned using a MEGA 4 multiple-alignment program to identify analogs. The conserved sequences that had a high degree of homology were selected and used to design universal primers via the gene runner software (Table 1). Designed primers were evaluated using PCR as a final point.

PCR and Sequencing of the β-Lactamase Genes

For identification of the β-lactamase genes of SHV, CTX-M1, and TEM, genomic DNA of the strains were extracted according to the manufacturer’s instructions (Bioneer Company). PCR process was followed on β-lactamase SHV (747 bp), CTX-M1 (593 bp) and TEM (445 bp) genes, using 3 pairs of universal primers under the following conditions: each PCR reaction contained 2.5 μL 10X buffer, 1 μL 50 mM MgCl₂, 1 μL 10 mM dNTP, 1.5 μL 50 pmol primer each for the forward and reverse primers, 1 μL 5 U Taq DNA polymerase, 2 μL 50 pmol template DNA, and 14.5 μL H₂O in a final volume of 25 μL. Markedly a mixture of template material was used as a negative control for SHV, CTX-M1 and TEM genes. In addition, Klebsiella pneumoniae ATCC 7881, E. coli strain DF39TA and E. coli ATCC 25923 were used as positive controls for all genes. PCR was carried out under the following conditions: initial denaturation at 94°C for 3 minutes, followed by 35 cycles of denaturation at 94°C for 1 minute, annealing at 62°C for 1 minute, and extension at 72°C for 1 minute. A negative control was used for this purpose. Muller Hinton Agar medium was prepared. Microbial suspension with concentrations of 0.5 McFarland extended completely were diffused in the medium. Then, discs of ceftazidime (30 μg), ceftazidime-clavonic acid (10-30 μg), cefotaxime (30 μg), and cefotaxime-clavonic acid (10-30 μg) prepared from the company (Rosco Neo-Sensitabs Denmark) were placed with at least 2.5 cm from each other on the medium.

Within 9 months, 400 stool samples were collected from 100 foodborne outbreaks that had occurred across the country. Diarrheal samples of the patients with foodborne poisoning with symptoms of diarrhea, vomiting, nausea, abdominal cramps, fever and headache were taken.

Fifty *E. coli* isolates were identified via biochemical tests on colonies based on the following criteria: positive glucose fermentation, positive lactose fermentation, negative citrate, negative SH2, positive nitrate, methyl red positive (MR), Yoges-Proskauer negative (VP), negative ureases, positive indole, and negative phenylalanine deaminase detected by using standard biochemical tests including the indole, methyl red, Yoges-Proskauer, and citrate (IMViC) tests. All strains of *E. coli* were isolated from the samples that created a metallic mucilage colony on the Eosin Methylene Blue (EMB) agar (Merck, Germany) and stored in skim milk at -70°C until required for further tests.

Screening and Phenotypic Identification of ESBLs

According to the Clinical and Laboratory Standards Institute (CLSI), disk diffusion method was carried out using Muller-Hinton agar (pH 7.4 = 7.2) for the initial screening of *E. coli* isolates expressing ESBLs. Microbial suspensions with concentrations of 0.5 McFarland were consistently spread on the plates with Muller-Hinton agar medium. Antibiotic disks prepared by the company (Rosco Neo-Sensitabs, Denmark) included ampicillin (10 μg), azitromycin (15 μg), cotrimoxazole (25 μg), nalidixic acid (30 μg), ciprofloxacin (5 μg), meropenem (10 μg), gentamicin (10 μg), ceftriaxone (30 μg) and ceftazidine (30 μg) which were placed with distance of at least 2.5 cm from each other and incubated for 24 hours at 37°C. The inhibition zone was measured around each disc and compared to the CLSI standard. Resistant isolates of cephalosporin representatives were selected for confirmatory testing. Combined disk was used for this purpose. Muller Hinton Agar medium was prepared. Microbial suspension with concentrations of 0.5 McFarland extended completely were diffused in the medium. Then, discs of ceftazidime (30 μg), ceftazidime-clavonic acid (10-30 μg), cefotaxime (30 μg), and cefotaxime-clavonic acid (10-30 μg) prepared from the company (Rosco Neo-Sensitabs Denmark) were placed with at least 2.5 cm from each other on the medium.

After incubation for 24 hours at 37°C, an inhibition zone around the disk containing clavonic acid as an inhibitor of ESBL enzymes was measured relative to non-clavionic acid. If there was an increase in the zone of inhibition (ZOI) by ≥5 mm, strain was considered as an ESBL generator according to the CLSI standards.

Primer Design

Submitted sequences related to the *E. coli* TEM, CTX-M1, and SHV are present in GenBank, NCBI. All sequences were achieved and aligned using a MEGA 4 multiple-alignment program to identify analogs. The conserved sequences that had a high degree of homology were selected and used to design universal primers via the gene runner software (Table 1). Designed primers were evaluated using PCR as a final point.

PCR and Sequencing of the β-Lactamase Genes

For identification of the β-lactamase genes of SHV, CTX-M1, and TEM, genomic DNA of the strains were extracted according to the manufacturer’s instructions (Bioneer Company). PCR process was followed on β-lactamase SHV (747 bp), CTX-M1 (593 bp) and TEM (445 bp) genes, using 3 pairs of universal primers under the following conditions: each PCR reaction contained 2.5 μL 10X buffer, 1 μL 50 mM MgCl₂, 1 μL 10 mM dNTP, 1.5 μL 50 pmol primer each for the forward and reverse primers, 1 μL 5 U Taq DNA polymerase, 2 μL 50 pmol template DNA, and 14.5 μL H₂O in a final volume of 25 μL. Markedly a mixture of template material was used as a negative control for SHV, CTX-M1 and TEM genes. In addition, Klebsiella pneumoniae ATCC 7881, E. coli strain DF39TA and E. coli ATCC 25923 were used as positive controls for all genes. PCR was carried out under the following conditions: initial denaturation at 94°C for 3 minutes, followed by 35 cycles of denaturation at 94°C for 1 minute, annealing at 62°C for 1 minute, and extension at 72°C for 1 minute.

The aim of this study was to identify ESBL-producing enzymes of *E. coli* using phenotypic methods and to evaluate TEM, SHV and CTX-M1 β-lactamase genes by polymerase chain reaction (PCR method) in foodborne disease outbreaks.11,12

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’ to 3’ as Synthesized)</th>
<th>Expected Amplicon Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bla<sub>TEM</sub></td>
<td>F = 5’-ATGTCGACTCCTGCTGTG-3'</td>
<td>747</td>
</tr>
<tr>
<td>Bla<sub>TEM</sub></td>
<td>R = 5’-AGGTGTCTGACGAGATTTAT-3’</td>
<td>445</td>
</tr>
<tr>
<td>Bla<sub>CTX-M</sub></td>
<td>F = 5’-ATGTCGACGAGCACCAGTACGTG-3’</td>
<td>593</td>
</tr>
<tr>
<td>Bla<sub>CTX-M</sub></td>
<td>R = 5’-CGGTCGTTGTTTTCGGGCAGTA-3’</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Primers used for amplification.
elongation at 72°C for 1 minute. The final elongation step (72°C) occurred for 10 minutes. A multiplex PCR for the SHV and CTX-M1 genes was also performed, similar to the one abovementioned by adding both pairs of primers. Afterward, electrophoresis of PCR products was performed using a 0.8% agarose gel with 100 bp DNA ladder (Fermentas).

Results
Fifty *E. coli* were recognized from 400 stool samples that were collected from 100 foodborne outbreaks in the country. Achieved resistance pattern of isolates against 10 antibiotics is shown in Table 2. Their resistance pattern is shown in Figure 1.

The highest resistance was exposed to ampicillin (56%). Combined disk test identified 28 (56%) of isolates as ESBLs (Figure 2), from which 55.6% were from male stool and 44.4% from female stool. Provincial dispersion was as follows: Yazd had the highest rate with 7 (38.9%), Zanjan had 5 cases (27.8%), Sanandaj had 4 cases (22.2%), and Semnan had 2 cases (11.1%). Thirteen cases (72.2%) were urban and 5 cases (27.8%) were rural.

PCR data showed that among these isolates, 19 (68%) were positive for *bla*_{CTX-M}, 9 (32%) for *bla*_{TEM} and 0 (0%) for *bla*_{SHV} (Figure 3).

Discussion
Contaminated foods that possess *E. coli* with antimicrobial resistance genes can transiently inhabit the gastrointestinal tract for consequent infection. *E. coli* is considered as an important foodborne pathogen that causes diarrhea both in children and adults. The aim of this study was to investigate the prevalence of resistance genes which express ESBL enzymes. These genes are repeatedly associated with the plasmid-encoded mechanisms. We focused on *bla*_{CTX-M}, *bla*_{SHV} and *bla*_{TEM} genes which are recognized to exhibit resistance to β-lactam antibiotics and are a major public health issue worldwide. The use of broad-spectrum beta-lactam antibiotics has increased rapidly along with resistance to these antibiotics. Currently, there are several phenotypic tests recommended by the CLSI to detect ESBLs. However, they are not sufficient for ultimate diagnosis of antibiotic resistant pathogens. In this study, recognizing ESBL-producing strains was performed according to the recommended tests by the CLSI. PCR was used to evaluate the prevalence of 13 lactamase enzymes and was successfully applied for the identification of ESBLs. This method is useful for detection of foodborne outbreaks which require rapid detection to prevent broadening and spread of the disease and to control outbreak well timed. In this study we gathered all samples from foodborne outbreaks that had happened in the country and recognized the genes which played a significant role in creating the resistance to β-lactam antibiotics.

Tested samples showed high resistance to ampicillin. In the study conducted by Soltan Dallal et al, the frequency of broad-spectrum beta-lactamase genes of TEM, DHA, and MOX of 200 isolates of *E. coli* were tested and 74 (57%) of them were reported as having the TEM gene.

Table 2. Pattern of Resistance Among 50 *Escherichia coli* Isolates Against 9 Antimicrobial Agents

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Resistance No. (%)</th>
<th>Intermediate No. (%)</th>
<th>Sensitive No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>11 (22)</td>
<td>20 (40)</td>
<td>19 (38)</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>24 (48)</td>
<td>1 (2)</td>
<td>25 (50)</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>25 (50)</td>
<td>6 (12)</td>
<td>19 (38)</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>20 (40)</td>
<td>7 (14)</td>
<td>33 (66)</td>
</tr>
<tr>
<td>Meropenem</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>50 (100)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>28 (56)</td>
<td>1 (2)</td>
<td>21 (42)</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>2 (5)</td>
<td>7 (14)</td>
<td>41 (82)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>8 (20)</td>
<td>5 (10)</td>
<td>37 (70)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>50 (100)</td>
</tr>
</tbody>
</table>

![Figure 1. Pattern of Resistance Among *Escherichia coli* Isolates Against Antimicrobial Agents.](image)
Therefore, molecular and spread of the ST131 clone among hospitalized diarrheal and MKT: doing experiments. HAMA: writing of the manuscript. Authors’ Contributions: MMSD and FF: concept and design of the study, critical revision, and appropriate treatment in emergency conditions like foodborne illnesses, it is suggested to gain more knowledge about the prevalence of different virulence genes in ESBL-producing E. coli. Therefore, molecular methods like PCR that has high sensitivity and specificity can be effective and helpful.

In another study, the molecular analysis of TEM broad-spectrum β-lactamase gene in E. coli isolated from clinical specimens indicated that out of 41 cases of isolated E. coli, 36 cases (87.8%) contained the TEM gene. Based on these results, having accurate data about the resistance genes could be helpful in achieving a correct pattern for taking helpful antibiotics. Previous results on prevalence of gram-negative bacteria, generators of broad-spectrum beta-lactamases, have shown that ESBLs are rising rapidly. In view of our survey, it was indicated that spread of ESBLs and their expression was associated with failures in treatment and increased mortality.

Conclusion
In order to control the proliferation of resistance genes in E. coli strains causing infection and to choose a rapid and appropriate treatment in emergency conditions like foodborne illnesses, it is suggested to gain more knowledge about the prevalence of different virulence genes in ESBL-producing E. coli. Therefore, molecular methods like PCR that has high sensitivity and specificity can be effective and helpful.

Authors’ Contributions
MMSD and FF: concept and design of the study, critical revision, final approval of the study, and obtaining funding for the study. ZR and MKT: doing experiments. HAMA: writing of the manuscript.

References

