Evaluation of Antimicrobial Activity of Cymbopogon citratus Essential Oil Alone and in Combination with Origanum majorana and Caryophyllus aromaticus Essential Oils against Some Foodborne Bacteria

Razieh Partovi1*, Fazeleh Talebi2, Zahra Boluki3, Aghil Sharifzadeh4,5

1Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
2Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
3Knowledge Utilization Research Center (KURC), Tehran University of Medical Sciences, Tehran, Iran
4Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
5Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

*Corresponding Author:
Razieh Partovi, Amol University of Special Modern Technologies, Haraz Street, Aftab 24, P.O. Box 46168-49767, Amol, Iran.
Tel: +98 11 44271057; Fax: +98 1144271054; Email: t.partovi@ausmt.ac.ir

Abstract
Background: Food spoilage and foodborne diseases are two important problems in the food industry. On the other hand, consumers' tendency to use natural additives is increasing. Hence, plant essential oils (EOs) can be safe alternatives in this regard.

Objective: The objectives were to determine the chemical composition and to evaluate the antimicrobial activity of Cymbopogon citratus EO against some foodborne bacteria alone and in combination with Origanum majorana and Caryophyllus aromaticus EOs.

Materials and Methods: Chemical composition of C. citratus EO was analyzed by gas chromatography-mass spectrometry. Further, antibacterial activity of the EO against foodborne bacteria was assessed using disk diffusion method. In addition, the minimum inhibitory concentration of the EO was determined by microdilution broth method and then the minimum bactericidal concentration value was determined. Checkerboard synergy testing was also performed to determine the fractional inhibitory concentration index. Finally, time-kill curves were drawn based on the bacterial population (CFU/mL) against time (h).

Results: The major compounds of C. citratus EO were isothymol, thymol, trans-caryophyllene, and cymene. The most and the least sensitive foodborne bacteria to C. citratus EO were Staphylococcus aureus and Bacillus subtilis, respectively. The minimum inhibitory concentration (MIC) values of C. citratus EO against all the evaluated bacteria were 0.1% and the minimum bactericidal concentration (MBC) values ranged between 0.1 and >2% (v/v). The combination of C. majorana EOs showed a synergistic activity against Salmonella typhimurium and partial synergism against B. subtilis, Escherichia coli O157:H7, S. aureus, and Listeria monocytogenes. Moreover, the combination of C. citratus and C. aromaticus EOs demonstrated partial synergism against S. aureus and L. monocytogenes, and additive interaction against S. typhimurium; however, the combination was indifferent against E. coli O157:H7 and B. subtilis. Furthermore, C. citratus plus O. majorana EOs and C. citratus plus C. aromaticus EOs showed a bactericidal effect against S. typhimurium after 24 hours in the time-kill assay.

Conclusion: In general, the synergism, partial synergism, and additive effects of C. citratus in combination with C. aromaticus and O. majorana EOs strengthen the antimicrobial activity, expand the spectrum of activity, reduce the concentrations required, decrease the side effects, and prevent the alteration of organoleptic properties of food.

Keywords: Antimicrobial activity, Origanum majorana, Cymbopogon citratus, Caryophyllus aromaticus, Essential oils, Chemical composition

Received August 7, 2018; Revised February 25, 2019; Accepted February 27, 2019

© 2019 The Author(s); Published by Alborz University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
accumulate in the lipid layer of bacterial cell membrane and cause membrane damage.12-15 Thymol, carvacrol, and eugenol as the major compounds of some plant EOs affect the function and permeability of cell membranes.14-16 A number of studies have assessed the antimicrobial activities of EOs in combination.12,17 Using EOs alone in food industry necessitates high concentrations of EOs and have some adverse effects on food sensory acceptability such as alteration in the taste, color, odor, and texture of food. However, using EOs in combination reduces the required concentration of each EO.18,19

Cymbopogon citratus (lemon grass) belongs to Poaceae family. _C. citratus_ is native to tropical and subtropical areas of the world especially India and Sri Lanka.20,21 Lemon grass is also cultivated in some other regions like Jiruf, Dezfool, Sari, and Masjed Soleiman in Iran.22,23 It is used as diuretic, sedative, antispasmodic, and antibacterial, as well as being used in the treatment of neurological and gastrointestinal disorders, acne, and pimples.20,21 Furthermore, lemon grass has antiemic, antidiarrheal, antifilarial, antifungal, and anti-inflammatory effects.11,24-26 The major compounds of _C. citratus_ EO are geranial, neral, myrecene, and β-pinene.27 The antimicrobial and antifungal activities of _C. citratus_ EO alone and in combination with other EOs have been proved in some studies.11,25,26,28,29 _Origanum majorana_ originates from eastern Mediterranean region and grows in the north and northwest of Iran.30 This plant has been used as tonic, diuretic, sedative, and antiseptic, as well as being used in wound healing.31 _Caryophyllus aromaticus_ is native to tropical areas especially Indonesia and India.32,33 The most important usage of _C. aromaticus_ in traditional medicine is the treatment of toothache and gingivitis with its antibacterial effect against oral bacteria.34,35

The objectives of this study were to assess chemical compositions and to evaluate antimicrobial activity of _C. citratus_ EO against some gram positive (_Listeria monocytogenes_ ATCC 7644, _Staphylococcus aureus_ ATCC 65138, _Bacillus subtilis_ ATCC 11778) and gram negative (_Escherichia coli_ O157:H7 ATCC 43895 and _Salmonella typhimurium_ ATCC 14028) foodborne bacteria were supplied from Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran. Bacterial strains were refreshed twice in sterile brain heart infusion (BHI) broth (Merck, Darmstadt, Germany) and counting the colonies after incubation at 37°C for 18 hours. The bacterial broth culture was placed in sterile cuvette and its optical density (OD) was adjusted to the absorbance at 600 nm of 0.1, using T80+ UV/VIS Spectronic spectrophotometer (PG Instruments Ltd, Leicestershire, UK). The number of cells in the suspension was estimated by duplicate plating from 10-fold serial dilutions on BHI agar (Merck, Darmstadt, Germany) and counting the colonies after incubation at 37°C for 18 hours.39

Materials and Methods

Plant Material and Extraction Procedure

Leaves of _C. citratus_ were purchased from Pakan Bazr Company (Isfahan, Iran). The plant was taxonomically identified at the Pharmacognosy Department, Faculty of Pharmacy, University of Tehran, Tehran, Iran. The plant was submitted to hydrodistillation in a Clevenger-type apparatus at 100°C for 5 hours. The EO was isolated and dried over anhydrous sodium sulfate and then stored in dark glass bottles at 4°C until required. _O. majorana_ and _C. aromaticus_ EOs were provided from the previous study.36

Gas Chromatography-Mass Spectrometry Analysis

C. citratus EO was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) (Thermoquest 2000, Manchester, UK). The chromatograph was equipped with DBS capillary column (30 m × 0.25 mm ID × 0.25 µm film thickness) and the data were acquired under the following conditions: initial temperature 50°C, program rate 2.5°C per minute, final temperature 265°C, and injector temperature 250°C. The carrier gas was helium and the split ratio was 1:120. The mass spectrum (MS) was run in the electron ionization mode, using an ionization energy of 70 eV. The components of _C. citratus_ EO were identified tentatively by comparing their retention indices and mass spectra with those of Wiley 275 Registry of Mass Spectral Data and literature citations.37,38 The chemical composition of _O. majorana_ and _C. aromaticus_ EOs have been determined in the previous study.36

Bacterial Strain and Inoculum Preparation

Standard strains of Gram positive (_L. monocytogenes_ ATCC 7644, _S. aureus_ ATCC 65138, _B. subtilis_ ATCC 11778) and Gram negative (_E. coli_ O157:H7 ATCC 43895 and _S. typhimurium_ ATCC 14028) foodborne bacteria were supplied from Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran. Bacterial strains were refreshed twice in sterile brain heart infusion (BHI) broth (Merck, Darmstadt, Germany) at 37°C for 18 hours. The bacterial broth culture was placed in sterile cuvette and its optical density (OD) was adjusted to the absorbance at 600 nm of 0.1, using T80+ UV/VIS Spectronic spectrophotometer (PG Instruments Ltd, Leicestershire, UK). The number of cells in the suspension was estimated by duplicate plating from 10-fold serial dilutions on BHI agar (Merck, Darmstadt, Germany) and counting the colonies after incubation at 37°C for 18 hours.39

Disk Diffusion Assay

Antibacterial activity of _C. citratus_ EO against foodborne bacteria was assessed using disk diffusion method. One hundred µL of bacterial suspension containing _×_10^7 colony forming units per mL (CFU/mL) was spread onto BHI agar containing 10% dimethyl sulfoxide (DMSO). The inoculated plates were put at room temperature for 5 minutes to dry. Then sterile paper disks inoculated with 10 µL of the EO were placed on BHI plates with chloramphenicol and streptomycin disks as positive controls and blank disks as negative controls. The plates were left for 15 minutes at room temperature to allow the diffusion of the EO, and were incubated at 37°C for 24 hours. At the end of the period, the diameter of the clear zone around each disk was measured with a ruler and expressed in millimeters as its antimicrobial activity. The EO would have antimicrobial activity if inhibition zone was more than 12 mm in diameter.40,41
Determination of Minimum Inhibitory Concentration and Minimum Bactericidal Concentration

The minimum inhibitory concentration (MIC) of C. citratus EO was determined by microdilution broth method based on the document M7-A6 of CLSI (CLAI, 2015) against foodborne bacteria. Sterile 96-well microplates were used for the assay. Dilution series of the EOs were prepared from 0.0031% to 1% (v/v) in BHI broth. The stock solutions of the EOs contained 10% (v/v) DMSO. Two hundred microliters of each dilution was transferred into 96-well microtitre plates, followed by the addition of 20 μL of respected standardized microorganism suspension containing 1×10⁶ CFU/mL. Growth control consisted of BHI broth, 10% (v/v) DMSO, and bacterial suspension. After incubation at 37°C for 24 hours, the lowest concentrations without visible growth were defined as the concentrations that completely inhibited bacterial growth (MICs). The minimum bactericidal concentration (MBC) of the EO was determined according to the MIC values, based on Celiktas et al. Ten microliters of each well that showed complete absence of growth was transferred to BHI agar plates and incubated at 37°C for 24 hours. The lowest concentrations of the EO where no viable bacteria were identified were recognized as the MBCs.

Checkerboard Assay

Checkerboard synergy testing was performed to determine the fractional inhibitory concentration index (FICI). Checkerboard assay was done by the microdilution broth method. In brief, serial double dilutions of C. citratus, O. majorana, and C. aromaticus EOs from 2 MIC to 1/64 MIC were prepared. The MIC of O. majorana EO was 0.1% against all tested bacteria except for B. subtilis (0.3%) and the MIC of C. aromaticus EO was 0.1% against all tested bacteria. One hundred microliters of C. citratus dilutions were added to the rows of a 96-well microtitre plate in diminishing concentrations and 100 μL of O. majorana dilutions were also added to the columns in diminishing concentrations. Moreover, 100 μL of C. citratus dilutions were added to the rows of another 96-well microtitre plate in diminishing concentrations and 100 μL of C. aromaticus dilutions were also added to the columns in diminishing concentrations. A 20-μL suspension of the bacterial strains adjusted to 1×10⁶ CFU/mL was added to each well and incubated at 37°C for 24 hours, with shaking at 125 rpm. The MIC of C. citratus EO in combination was determined as described above. Each experiment was repeated two times. FICI was calculated as follows:

\[
\text{FICI} = \frac{\text{MIC of } C. \text{ citratus in combination}}{\text{MIC of } C. \text{ citratus alone}} - \frac{\text{MIC of } O. \text{ majorana in combination}}{\text{MIC of } O. \text{ majorana alone}}
\]

Results

Chemical Composition of the EO

The main constituents of C. citratus EO were isothymol (59.42%), thymol (15.23%), and cymene (5.82%).

Agar Disk Diffusion Assay

Antimicrobial activity of C. citratus EO was evaluated by disk diffusion method (Table 2). The evaluated EO had remarkable antimicrobial effect (inhibition zone >12 mm). Based on this evaluation, the most and the least sensitive foodborne bacteria to C. citratus EO were S. aureus and B. subtilis, respectively. Moreover, the inhibition zone of C. citratus EO against all the tested bacteria except for B. subtilis were even greater than that of streptomycin (P>0.05). Furthermore, the inhibition zone of C. citratus EO against E. coli O157:H7 and S. typhimurium was greater than that of chloramphenicol (P>0.05).

Determination of Minimum Inhibitory Concentration and Minimum Bactericidal Concentration

The MIC and MBC values of C. citratus EO against foodborne bacteria are shown in Table 3. The MIC values...
of *C. citratus* EO against all the evaluated bacteria were 0.1% and the MBC values ranged between 0.1 and >2% (v/v).

Checkerboard Assay

The results of checkerboard analyses for *C. citratus* plus *O. majorana* EOs and *C. citratus* plus *C. aromatics* EOs against foodborne bacteria are shown in Tables 4 and 5, respectively. FICI values of *C. citratus* plus *O. majorana* EOs against foodborne bacteria ranged from 0.50 to 0.750. The combination of *C. citratus* and *O. majorana* EOs showed a synergistic interaction (FICI ≤ 0.5) against *S. typhimurium*. According to the analysis, the MIC of *C. citratus* and *O. majorana* EOs alone against *S. typhimurium* was lowered from 0.100 to 0.025 (% v/v) in combination. Moreover, the combination of *C. citratus* and *O. majorana* EOs showed partial synergism (1.0 > FICI > 0.5) against *B. subtilis*, *E. coli* O157:H7, *S. aureus*, and *L. monocytogenes*. Likewise, FICI values for *C. citratus* plus *C. aromatics* EOs ranged from 0.75 to 1.25 against foodborne bacteria. The combination of *C. citratus* and *C. aromatics* EOs showed partial synergism (1.0 > FICI > 0.5) against *S. aureus* and *L. monocytogenes* and an additive interaction (FICI = 1.0) against *S. typhimurium*. While, the combination of *C. aromatics* and *C. citratus* EOs was indifferent against *E. coli* O157:H7 and *B. subtilis*. Finally, no antagonistic effect was observed for *C. citratus*.

Time-Kill Assay

Time-kill assay was used to analyze the killing rate of *C. citratus* EO alone and in combination with *O. majorana* and *C. aromatics* EOs against foodborne bacteria. The time-kill curves of *C. citratus* EO alone and in combination with *O. majorana* and *C. aromatics* EOs (at MIC values) against foodborne bacteria are shown in Figure 1. Bactericidal effects of EOs are concluded when a three or more reduction in bacterial counts is observed in time-kill curves and the bacteriostatic effect when EO inhibits the bacterial growth.55,56 *C. citratus* EO showed a bacteriostatic effect against foodborne bacteria. The combination of *C. citratus* and *C. aromatics* EOs reduced the bacterial colony count of *E. coli* O157:H7 in comparison to *C. citratus* EO by 2 log after 6 hours. *C. citratus* plus *O. majorana* EOs and *C. citratus* plus *C. aromatics* EOs showed bactericidal effects against *S. typhimurium* after 24 hours. Furthermore, *C. citratus* plus *O. majorana* EOs and *C. citratus* plus *C. aromatics* EOs reduced the bacterial colony count of *S. typhimurium* in comparison to *C. citratus* EO by 3 log after 24 hours.

Table 1. Chemical Composition (%) of Cymbopogon citratus EO Determined by GC-MS

<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
<th>Quantity (%)</th>
<th>Retention Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-beta-Pinene</td>
<td>0.53</td>
<td>7.61</td>
</tr>
<tr>
<td>2</td>
<td>Caryene</td>
<td>5.82</td>
<td>9.57</td>
</tr>
<tr>
<td>3</td>
<td>gamma-Terpinene</td>
<td>2.70</td>
<td>10.99</td>
</tr>
<tr>
<td>4</td>
<td>Thymol</td>
<td>15.23</td>
<td>22.56</td>
</tr>
<tr>
<td>5</td>
<td>alpha-Cubebene</td>
<td>0.09</td>
<td>24.54</td>
</tr>
<tr>
<td>6</td>
<td>Copaene</td>
<td>0.38</td>
<td>25.57</td>
</tr>
<tr>
<td>7</td>
<td>trans-Caryophyllene</td>
<td>10.18</td>
<td>27.36</td>
</tr>
<tr>
<td>8</td>
<td>alpha-Humulene</td>
<td>1.41</td>
<td>28.48</td>
</tr>
<tr>
<td>9</td>
<td>delta-Cadinene</td>
<td>0.16</td>
<td>30.90</td>
</tr>
<tr>
<td>10</td>
<td>1S alpha-Pineene</td>
<td>0.13</td>
<td>6.15</td>
</tr>
<tr>
<td>11</td>
<td>beta-Phellandrene</td>
<td>0.22</td>
<td>9.69</td>
</tr>
<tr>
<td>12</td>
<td>trans-Anethole</td>
<td>0.72</td>
<td>21.66</td>
</tr>
<tr>
<td>13</td>
<td>Isothymol</td>
<td>59.42</td>
<td>23.58</td>
</tr>
<tr>
<td>14</td>
<td>Eugenol</td>
<td>1.79</td>
<td>25.12</td>
</tr>
<tr>
<td>15</td>
<td>(-)-Caryophylleneoxide</td>
<td>0.25</td>
<td>32.76</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>99.03</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Antimicrobial Activity (mm) of Cymbopogon citratus EO Against Foodborne Bacteria as Detected by Agar Disk Diffusion Assay

<table>
<thead>
<tr>
<th>EO</th>
<th>E. coli O157:H7</th>
<th>S. typhimurium</th>
<th>S. aureus</th>
<th>B. subtilis</th>
<th>L. monocytogenes</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. citratus</td>
<td>20.16±0.28<sup>abc</sup></td>
<td>20.16±0.57<sup>bc</sup></td>
<td>20.66±0.28<sup>ab</sup></td>
<td>18.66±0.57<sup>cd</sup></td>
<td>19.13±0.76<sup>bca</sup></td>
<td>0.033</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>12.3±0.57<sup>bc</sup></td>
<td>13.6±0.57<sup>bc</sup></td>
<td>12.0±0.00<sup>b</sup></td>
<td>23.0±0.00<sup>cd</sup></td>
<td>14.0±0.00<sup>bca</sup></td>
<td>0.011</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>17.6±0.57<sup>cd</sup></td>
<td>19.0±0.00<sup>bc</sup></td>
<td>24.6±0.57<sup>ab</sup></td>
<td>29.0±0.00<sup>ac</sup></td>
<td>22.6±0.57<sup>ab</sup></td>
<td>0.008</td>
</tr>
<tr>
<td>P value</td>
<td>0.025</td>
<td>0.023</td>
<td>0.023</td>
<td>0.020</td>
<td>0.023</td>
<td></td>
</tr>
</tbody>
</table>

Inhibition area including 6 mm disk diameter.

Results are mean ± SD of 3 replicates.

Within the columns, significant differences are represented by different superscript capital letters (*P* < 0.05). Within the rows, significant differences are represented by different superscript small letters (*P* < 0.05).

Table 3. MIC and MBC values (% v/v) of Cymbopogon citratus EO Against Foodborne Bacteria Determined by Microdilution Broth Method

<table>
<thead>
<tr>
<th>Foodborne Bacteria</th>
<th>E. coli O157:H7</th>
<th>S. typhimurium</th>
<th>S. aureus</th>
<th>B. subtilis</th>
<th>L. monocytogenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC</td>
<td>0.1<sup>a</sup></td>
<td>0.1<sup>a</sup></td>
<td>0.1<sup>a</sup></td>
<td>0.1<sup>a</sup></td>
<td>0.1<sup>a</sup></td>
</tr>
<tr>
<td>MBC</td>
<td>0.1<sup>a</sup></td>
<td>0.1<sup>a</sup></td>
<td>0.1<sup>a</sup></td>
<td>>2<sup>b</sup></td>
<td>>2<sup>b</sup></td>
</tr>
</tbody>
</table>

Note: Within the rows, significant differences are represented by different superscript small letters (*P* < 0.05).
addition, *C. citratus* plus *O. majorana* EOs and *C. citratus* plus *C. aromaticus* EOs reduced the bacterial colony count of *S. aureus* in comparison to *C. Citratus* EO by 1 log after 6 hours. It was also found that the combination of *C. citratus* and *C. aromaticus* EOs reduced the bacterial colony count of *L. monocytogenes* in comparison to *C. Citratus* EO by 1 log after 6 hours.

Discussion

In the present study, the main components of the EO of *C. citratus* leaves were found to be isothymol, thymol, trans-caryophyllene, and cymene. The major components of whole plant of *C. citratus* collected from Kenya were geranial, neral, myrcene, and geraniol.\(^47\) Oliveira et al reported that the main components of EO of *C. citratus* fresh leaves collected from Brazil were geranial, neral, and myrcene.\(^48\) The factors such as characteristics of plant species, plant part used for extraction, and extraction technique, as well as environmental, seasonal, and geographical conditions are the reasons for the differences in the chemical composition of plant EOs.\(^49,50\) Thymol causes a distortion of the membrane physical structure and increases the microbial cytoplasmic membrane permeability.\(^51\)

It was found that *C. citratus* EO had a remarkable antimicrobial effect (inhibition zone > 12 mm). *S. aureus* and *B. subtilis* were the most and the least sensitive bacteria to *C. citratus* EO, respectively. The inhibition

Table 4. Effects of 2 EO Combinations (*C. citratus* and *O. majorana*) Against Foodborne Bacteria Using Checkerboard Assay

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>MIC (%v/v) of Each EO in Combination</th>
<th>FIC (%)</th>
<th>FICI</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. citratus</td>
<td>O. majorana</td>
<td>C. citratus</td>
<td>O. majorana</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>0.025</td>
<td>0.050</td>
<td>0.250</td>
<td>0.500</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>0.025</td>
<td>0.025</td>
<td>0.250</td>
<td>0.250</td>
</tr>
<tr>
<td>S. aureus</td>
<td>0.025</td>
<td>0.050</td>
<td>0.250</td>
<td>0.500</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>0.050</td>
<td>0.012</td>
<td>0.500</td>
<td>0.041</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>0.050</td>
<td>0.025</td>
<td>0.500</td>
<td>0.250</td>
</tr>
</tbody>
</table>

Table 5. Effects of 2 EO Combinations (*C. citratus* and *C. aromaticus*) Against Foodborne Bacteria Using Checkerboard Assay

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>MIC (%v/v) of Each EO in Combination</th>
<th>FIC (%)</th>
<th>FICI</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. citratus</td>
<td>O. majorana</td>
<td>C. citratus</td>
<td>O. majorana</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>0.025</td>
<td>0.1</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>0.05</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>S. aureus</td>
<td>0.025</td>
<td>0.05</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>0.0124</td>
<td>0.1</td>
<td>0.041</td>
<td>1</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>0.025</td>
<td>0.05</td>
<td>0.25</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure 1. Time-kill Curves of Control (♦), *C. citratus* EO (▲), *C. citratus* Plus *O. majorana* EOs (×) and *C. citratus* Plus *C. aromaticus* EOs (■) (at MIC Value) Against Foodborne Bacteria (a= *E. coli O157:H7*, b= *S. typhimurium*, c= *S. aureus*, d= *B. subtilis* and e= *L. monocytogenes*).
zone of *C. citratus* EO against all the tested bacteria except for *B. subtilis* were even greater than that of streptomycin (*P* > 0.05). And the inhibition zone of *C. citratus* EO against *E. coli* O157:H7 and *S. typhimurium* was greater than that of chloramphenicol (*P* > 0.05). Bassol et al showed the antimicrobial effect of *C. citratus* EO against *E. faecalis*, *S. aureus*, *L. monocytogenes*, *E. aerogenes*, *E. coli*, *S. typhimurium*, *S. dysenteriae*, and *P. aeruginosa*, and reported larger inhibition zone for *C. citratus* EO against other microorganisms.\(^{28}\) This difference can be attributed to the main components of the EO which were geranial and neral. Naik et al studied the antimicrobial effect of *C. citratus* EO against *S. aureus*, *Bacillus cereus*, *B. subtilis*, *E. coli*, *Klebsiella pneumonia*, and *P. aeruginosa* by disk diffusion method. *S. aureus* and *P. aeruginosa* were the most and the least sensitive bacteria, respectively. Akin to the results of the present study, zone of inhibition (mm) of *C. citratus* EO (30% (v/v)) against *S. aureus* was 29.66 mm.\(^{52}\) EOs exert their antimicrobial effects through a number of mechanisms including inhibition of nucleic acid synthesis, disturbance in the cytoplasmic membrane properties and energy metabolism.\(^{45}\) EOs attack cell membrane phospholipids and increase the permeability of the cell wall and cause cytoplasmic leakage.\(^{12,15}\)

The MIC values of *C. citratus* EO against all foodborne bacteria were 0.1% (v/v). Likewise, the MBC values of *C. citratus* EO against foodborne bacteria were 0.1% except for *B. subtilis* and *L. monocytogenes* (MBC >2%). This result was proved by disk diffusion assay which showed the least inhibition zones for *B. subtilis* and *L. monocytogenes*. Bassolé et al found the MIC values of *C. citratus* EO, ranged from 0.1% for *Enterococcus faecalis* to 8% for *P. aeruginosa*.\(^{29}\) Chaftar et al also found the MIC value of *C. citratus* EO against *E. coli* O157:H7 and *S. typhimurium* (>0.4%).\(^{53}\)

In this study, the antimicrobial effect of *C. citratus* plus *O. majorana* EOs and *C. citratus* plus *C. aromaticus* EOs against foodborne bacteria were studied for the first time. The combination of *C. citratus* and *O. majorana* EOs showed a synergistic effect against *S. typhimurium*. Furthermore, the combination of two EOs (*C. citratus* and *O. majorana*) showed partial synergism against *B. subtilis*, *E. coli* O157:H7, *S. aureus*, and *L. monocytogenes*. The combination of *C. citratus* and *C. aromaticus* EOs also showed partial synergism against *S. aureus* and *L. monocytogenes* and an additive interaction against *S. typhimurium*. In addition, the combination of two EOs (*C. citratus* and *C. aromaticus*) was indifferent against *E. coli* O157:H7 and *B. subtilis*. Yet no antagonistic effect was observed for *C. citratus*. Bassolé et al showed that the combination of *C. citratus* and *Cymbopogon giganteus* EOs had a synergistic effect against *S. aureus*, *L. monocytogenes*, *S. typhimurium*, and *E. aerogenes*.\(^{29}\) Gutierrez et al reported that the combination of *O. majorana* and *Origanum vulgare* EOs were indifferent against *L. monocytogenes* and *P. aeruginosa*, while an additive effect was seen against *B. cereus* and *E. coli* O157:H7.\(^{19}\) Tserennadmid et al reported that the combination of *O. majorana* and *Juniperus communis* EOs had a synergistic effect against *E. coli*.\(^{34}\) *C. aromaticus* plus *Rosmarinus officinalis* EOs had additive antimicrobial effects against *E. epidermidis*, *S. aureus*, *B. subtilis*, *E. coli* O157:H7, *P. vulgaris*, and *P. aeruginosa*.\(^{29}\) Using the combinations of EOs with synergistic or additive effects may decrease the need for chemical additives, limit their adverse effects and antibiotic resistance, may reduce required doses, and expand the spectrum of activity.\(^{18,44}\) Furthermore, by using EOs in combination, the microorganisms were inhibited through the simultaneous effects of various chemical compounds, thereby improving antimicrobial properties.\(^{36}\)

In the current study, *C. citratus* EO alone did not show bactericidal effect against foodborne bacteria in the time-kill assay. While, *C. citratus* plus *O. majorana* EOs and *C. citratus* plus *C. aromaticus* EOs showed a bactericidal effect against *S. typhimurium* after 24 hours. Furthermore, *C. citratus* plus *O. majorana* EOs and *C. citratus* plus *C. aromaticus* EOs reduced the bacterial colony count of *S. typhimurium* in comparison to *C. citratus* EO by 3 log after 24 hours. Khan and Ahmad studied the antimicrobial effect of *C. citratus* and *Syzygium aromaticum* EOs against *Candida albicans* by time-kill assay and reported that more than 60% reduction in viable count of *C. albicans* was exhibited by *C. citratus* EO after 10–12 hours which was more effective than amphotericin B and fluconazole.\(^{28}\) Oliveira et al studied the antimicrobial effects of *Origanum vulgare* and *O. majorana* EOs at the MIC values against *S. aureus*, *Proteus* spp., and *Klebsiella* spp. by the time-kill assay. The most potent inhibitory effect was shown by *O. majorana* EO against *Proteus* spp. which killed the initial inoculum after 4 hours.\(^{51}\) The results of time-kill assay of the current study verified the abovementioned results on the synergistic effect of *C. citratus* and *O. majorana* EOs and additive effect of *C. citratus* and *C. aromaticus* EOs against *S. typhimurium*.

Conclusion

In general, the current study showed that *C. citratus* EO had an antimicrobial activity against the most important foodborne bacteria. Therefore, the combination of *C. citratus* EO with *O. majorana* and *C. aromaticus* EOs can be used as an alternative for synthetic additives to reduce their side effects and also to decrease antibiotic resistance. The combination of these EOs, depending on the corresponding microorganism, exhibited additive, synergistic, and partial synergistic, as well as indifferent interaction. These interactions strengthen the antimicrobial activity, expand the spectrum of activity, reduce the concentrations required, decrease the side effects, and prevent the alteration of organoleptic...
properties of food. To the best of our knowledge, this is the first study on the antimicrobial effects of *C. citratus* in combination with *O. majorana* and *C. aromaticus* EOs. Further studies on the interaction of these EOs with food ingredients, their modes of action, and their components’ mechanisms of action are required.

Authors’ Contributions

RP: Designing the study, writing the manuscript; FT: Drafting the manuscript; ZB: Conducting the statistical analyses; AS: Obtaining the samples.

Ethical Approval

All procedures performed in this study were in accordance with the ethical standards of the National Research Committee.

Conflict of Interest Disclosures

The authors declare that they have no conflict of interests.

Financial Support

This study was supported by a grant from Amol University of Special Modern Technologies.

References
