Helicobacter Pylori and CagA: Relationships With Esophageal and Gastroduodenal Disorders in Iranian Patients

Omids Teymournejad, Leili Shokoohizadeh, Ashraf Mohabat Mobarez, Mohsen Amini

1Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, IR Iran
2Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
3Department of Laboratory Medical Science, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
4Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, IR Iran

Background: The severity of Helicobacter pylori infection is associated with virulence factors of the bacteria and host immune response. H. pylori has several virulence factors which a number of them are essential to emerge clinical outcomes. Cytotoxin-associated gene A (CagA) is the most important H. pylori virulence factor.

Objectives: The aim of our study was to assess a significant relationship between presence of CagA and severity of clinical manifestation in esophageal and gastroduodenal disorders.

Patients and Methods: A total of 240 gastric biopsies were collected between March 2012 and August 2013 from Tehran’s hospitals. Three sets of biopsy specimens were obtained from the antrum and rapid urease tests, histological examination, Polymerase Chain Reaction (PCR) assay were performed on the biopsy specimens.

Results: One hundred and eight (45%) of biopsy specimens were positive with rapid urease test and ureC gene PCR. Moreover, thirty-eight (35.18%) of positive specimens had cagA gene. The rate of gastric and duodenum inflammation was more in patients who carried CagA positive H. pylori strains. Whereas less inflammation and sever lesions in esophagus were found in CagA negative H. pylori strains.

Conclusions: Our study demonstrates a strong relationship between CagA and esophageal and gastroduodenal disorders. The number of CagA negative H. pylori was larger than CagA positive in esophagus lesion grade A, C, and D. Therefore, cagA may have a protective effect on some esophageal diseases. In addition, the number of CagA positives was larger than CagA negative H. pylori in gastric antrum and duodenum ulcer. Thus, CagA play a role to emerge peptic and duodenal ulcers.

Keywords: Helicobacter Pylori; Esophageal Disorders; CagA

1. Background

After discovering the H. pylori pathogenesis by Barry and Marshal, many research groups have focused on the H. pylori virulence factors and co-relation between its virulence factors and pathological or clinical outcomes (1-3).

It has been proved that the bacterium is the main cause of gastritis, gastric and duodenal ulcer and gastric cancer (4, 5). WHO has declared that H. pylori should be recognized as type I carcinogen (6).

The pathogenesis of H. pylori is complicated, and many infected people are asymptomatic (7, 8). Moreover, H. pylori virulence factors play an important role in clinical outcomes, and CagA is the most important virulence factor of the bacteria (9). Additionally, it has been proved that 60% of H. pylori expresses this 128 kDa protein, and many investigators have reported that there is a correlation between H. pylori CagA positive and severity of stomach disorder (2). These strains are leading cause of IL-8 production, acts rearrangement, cell cycle interference, inducing of oncogenes expression and eventually damage to cells (10-12).

Some research groups have reported that H. pylori can interfere to signal transduction and cell cycle via CagA. Thus, injection of this virulence factor into host cells causes activation of NF-kb and turning cells into cancer (13). The rate of H. pylori carriers in Iran is very high, and there are increasing reports of gastric cancer and stomach disorder in this region as well (14, 15).

2. Objectives

The main aim of present study was to assess a significant relationship between presence of CagA and severity of clinical manifestations in esophageal and gastroduodenal disorders.

3. Patients and Methods

3.1. Patients

The present study was conducted from March 2012 to August 2013. A total of 240 gastric biopsies were collected from patients who were referred to general hospitals in Tehran (Iran).
3.2. Biopsy Sampling
Three sets of biopsy specimens were obtained from the antrum, and each set of three specimens was divided as follows: One each for rapid urease tests; one for histological examination; One for Polymerase Chain Reaction (PCR) assay.

3.3. Rapid-Urease Test
Antrum biopsy specimens were put into a semisolid 2% urea agar and the results were observed 0.5 to 4 hours incubation at room temperature.

3.4. Histological Examination
The specimens were fixed by formalin, embedded in paraffin and stained by H and E to find out the severity of gastritis.

3.5. Preparation of Samples for Polymerase Chain Reaction
Genomic DNAs were extracted from gastric biopsy specimens using the extraction kit (Sinagen, Iran) according to the company instructions. The presence of *H. pylori* DNA in biopsy samples were detected by PCR amplification of *H. pylori* ureC gene (Table 1). In addition, cagA gene was detected by PCR amplification of a 297-bp region in the cagA gene as previously described (Table 1) (16, 17). *H. pylori* ATCC49503 was used as positive control.

3.6. PCR Conditions
Total volume of each reaction was 50 µL including 5 µL 10 × buffer, 1 µL dNTP (100 mM), 2.5 µL MgCl₂ (250 mM), 1 µL Primers (25 pmol), 3 unit Taq DNA polymerase, 10 µL DNA template (100 - 450 ng), 28 µL DDW. Primary denaturation (94°C, 5 minutes), secondary denaturation (93°C, 1 minute), annealing (cagA 55°C, ureC 50°C, 1 minute), elongation (72°C, 1 minute), 38 cycles, final extension (72°C, 10 minutes).

3.7. Statistical Analysis
The SPSS software (Chicago, Ill., USA) was used for data analysis and for discovering a significant different between the groups we used the chi-square test. A P < 0.05% was accepted as statistically significant.

| Table 1. Primer Sequences, Annealing and Expected Lengths of Amplified DNA Products (16, 17) |
|---|---|---|
| Primer | Sequences | Annealing, °C | Product Length, bp |
| ureC Gene | | 50 | 294 |
| Forward | 5´-AAGCITIAGGGGTTAGGGGTTT-3´ | | |
| Reverse | 5´-AAGCITACTCTACACATACGC-3´ | | |
| cagA Gene | | 55 | 297 |
| Forward | 5´-ATAATGCTAAATTAGACAACTTGAGCGA-3´ | | |
| Reverse | 5´-TTAGAATAATCAACAAACATCACGCCAT-3´ | | |

| Table 2. Prevalence of cagA *H. pylori* in Different Esophageal and Gastroduodenal Disorders |
|---|---|---|
| Variables | cagA Positive | cagA Negative | P value |
| Age average | 22 | 24 | 0.00 |
| Female (n = 62) | 16 | 46 | 0.337 |
| Male (n = 46) | 42 | 36 | 0.546 |
| Esophagitis (n = 22) | 10 | 12 | 0.546 |
| Esophagus lesion grade A (n = 18) | 6 | 12 | 0.046 |
| Esophagus lesion grade B (n = 9) | 4 | 5 | 0.637 |
| Esophagus lesion grade C (n = 2) | 0 | 2 | 0.046 |
| Esophagus lesion grade D (n = 2) | 0 | 2 | 0.046 |
| Gastric mucosa atrophy (n = 6) | 4 | 2 | 0.248 |
| Gastric antral ulcer (n = 2) | 2 | 0 | 0.046 |
| Duodenal ulcer (n = 14) | 10 | 4 | 0.023 |
| Deformation of duodenum (n = 18) | 10 | 8 | 0.505 |

a Statistically significant differences between CagA positive and CagA negative groups.
4. Results

The rapid-urease test was positive for 108 (45%) of biopsy specimens and the color change of semi-solid media indicated that the specimens had unease activity of H. pylori.

4.1. PCR Based ureC Gene

The presence of H. pylori was detected in 45% (n = 108) biopsy samples. The ureC (glmM) gene was amplified in all of urease positive samples 35.5% (n = 108) and PCR method did not miss any urease positive biopsy specimen.

4.2. PCR Based cagA Gene

35.1% (n = 38) of H. pylori strains harbored virulence gene (cagA).

4.3. Endoscopic Findings

Demographic information and endoscopic finding were shown in Table 2. According to the endoscopic findings the rate of lesion and duodenum inflammation was more in patients who carried CagA positive H. pylori strains (P < 0.05). Whereas there is less inflammation and sever lesions in esophagus were found in CagA negative H. pylori strains (Table 2).

Although presence of H. pylori in stomach may result in gastritis and gastric cancer, all infected individuals don’t express clinical manifestations. Therefore, a number of people remain as healthy carriers (18). There are several factors which contribute to emerge clinical outcomes including bacterial virulence factors, host genetics and unhealthy lifestyle (19).

The bacterial virulence factors play a main role in the pathogenesis of H. pylori. Furthermore, there is much concrete evidence which H. pylori virulence factors are essential to express clinical symptoms (20). In addition, it has been proved that CagA is the most important virulence factor in the bacteria, and individuals infected by CagA positive H. pylori are at high risk of developing gastric adenocarcinoma and duodenal ulcer disease (21).

Even though H. pylori contributes to gastro-duodenal diseases, there are a number of reports that the bacterium may play a protective role against esophageal adenocarcinoma (22). Moreover, some investigators have claimed that CagA positive H. pylori have an inverse association with esophageal adenocarcinoma (23). The present study has revealed that there was a significant difference between CagA positive and negative H. pylori in patients with some esophageal disorders. To further expand, while we did not find significant difference between CagA positive and negative in esophagitis and esophagus lesion grade B, we discovered that the number of CagA negative H. pylori was larger than CagA positive in esophagus lesion grade A, C, and D (P > 0.05). Therefore, our results have shown that cagA may have a protective effect on some esophageal diseases.

However, CagA positive H. pylori presents in 60 - 70% all isolated strains, and some epidemiological studies have shown that this virulence factor contributes to developing gastritis, peptic ulcer and gastric cancer (24, 25). Our finding confirmed the previous investigations which are performed in Iran (26, 27). Although, there was no significant difference between CagA positive and negative H. pylori in gastric mucosa atrophy and deformation of duodenum, we have figured out that the number of CagA positives was larger than CagA negative H. pylori in gastric antrum and duodenal ulcer. Our results showed that the percentage of CagA positive H. pylori is lower than other countries.

In conclusion, our findings have confirmed a number of previous reports which had claimed that CagA positive H. pylori probably benefits for preventing from esophageal disorders and this virulence factor has protective effects by unclear mechanism. On the contrary, our results have shown that CagA positive H. pylori was leading cause of gastric and duodenal ulcers. Moreover, while there was no significant difference between CagA positive and negative in men we have found that the number of CagA negatives was remarkably larger than CagA positives in women.

5. Discussion

Our study demonstrates a strong relationship between CagA and esophageal and gastro-duodenal disorders in Iran. Moreover, our investigation has interestingly revealed that the number of CagA negative in females is considerably larger than CagA positive H. pylori, while there was no statistically significant difference between CagA positive and negative among males.
Modares University, We would like to thank all the staff at Endoscopy unit in Baqiyatallah hospital, Baqiyatallah University of Medical Sciences in Tehran.

Authors’ Contributions
Study concept and design: Lelii shokoohizadeh and Ashraf mohabati Mobarez; Acquisition of data: Omid Teymournejad, Leili Shokoohizadeh, and Mohsen Amini; Analysis and interpretation of data: Omid Teymournejad; Drafting of the manuscript: Omid Teymournejad and Leili Shokoohizadeh; Critical revision of the manuscript for important intellectual content: Leili Shokoohizadeh; Statistical analysis: Omid Teymournejad.

Funding/Support
The present study financially was supported by Tarbiat Modares University, Tehran, Iran.

References